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SUMMARY

The probability of detecting first, second, and later quanta secreted at release sites of a motor-nerve
terminal during the early release period following a nerve impulse has been addressed. The possibility that
early quantal release autoinhibits later quantal release during this period has also been ascertained. In
this investigation, a model for the secretion of a quantum at a release site is developed in which, following
the influx and diffusion of calcium ions to a release site protein associated with synaptic vesicles, £ steps
of association of the ions with the protein then occur at rate . The release site protein then undergoes
a conformational change which may not go on to completion if calcium ions dissociate from the protein
at rate . If this process does reach completion then a fusion-pore between the vesicle and the presynaptic
membrane is created; this happens at rate §. Key assumptions of this fusion-pore model are that the
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quantal secretions from each site are independent of each other, and that there is a large number of
vesicles, each with a small probability of secretion, so that the number of secretions is Poisson in nature.
These assumptions allow analytical expressions to be obtained for predicting the times at which first,
second and later quanta are secreted during the early release period following an impulse.

To test the model, experiments were performed in which the times of first, second and later quantal
releases were determined at discrete regions along the length of visualized motor-terminal branches in
toad (Bufo marinus) muscles. Estimates of model rate constants and of £ from the times for first quantal
secretions failed to give satisfactory predictions of the observed times of later secretions. Therefore, either
the model fails, or the procedure used for detecting later quantal events as a consequence of their being
masked by earlier quantal events is inadequate.

To solve this detection problem, a two-dimensional analysis of the spread of charge following the
secretion of a quantum at a random site on the motor-terminal branch has been done. This allows
determination of the probability that later quanta will be detected following secretion of earlier quanta.
The detection model was then incorporated into the fusion-pore model to predict the times at which
second and later quanta occur during the early release period, based on the estimates of the model
parameters derived from the analysis of first quantal releases. Good estimates were now obtained for the
observed times of second and later quantal releases, indicating that appropriate procedures must be
adopted for adequate detection of quantal secretions. Furthermore, the experiments provide support for
the fusion-pore model.

It has been suggested that the binomial nature of quantal release from the entire motor-nerve terminal
may be explained if early quantal release inhibits later quantal release during the early quantal release
phase (M. R. Bennett & J. Robinson 1990, Proc. R. Soc. Lond. B 239, 329-358). Although the fusion-pore
detection error model gave good predictions of the observed times of first, second and later quantal
releases, these may be improved if a model for autoinhibition is included. In this model the first quantum
was taken as giving rise to an inhibition of secretion that propagates to surrounding release sites with a
constant velocity, ». A combined model incorporating the fusion-pore detection error model and that for
autoinhibition was then used to predict second and later quantal latencies, by using the first quantal
latencies to determine the estimates for the parameters in the combined model. When this analysis was
done on the times for quantal secretion at sites on thirteen different motor-nerve terminals, the value of

PHILOSOPHICAL
TRANSACTIONS

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

v was estimated as zero in each case, so that no autoinhibitory effect was observed.

1. INTRODUCTION

Katz & Miledi (19654) obtained the first histogram of
the latency of quantal secretion following a nerve
impulse at a restricted number of release sites of
somatic motor-nerve terminals. At room temperature
the earliest quantal secretion did not occur until a time
(1), about 0.5 ms after the impulse, with the rate of
secretion reaching a maximum within a millisecond
and then declining approximately exponentially within
about 3.0 ms. Stevens (1968) explicitly identified that
there was an underlying stochastic process governing
this time course, in which the nerve impulse initiated a
quantal release process (with a rate «(¢)) at each of the
n release sites. The probability of quantal secretion in
the interval (¢, ¢4 d¢) is then a(¢) d¢ approximately (for
small df), and the total release rate is A(¢) = na(¢).
Using this formulation Barrett & Stevens (1972a, b)
showed that a(#), determined from the latencies of first
quantal secretions following an impulse, declined
exponentially over a wide range of temperatures.
Bennett et al. (1977) showed that the observed
distribution of quantal latencies from release sites (77)
could be reasonably well described by a gamma
random variable with parameters («,4) for time to
release, coupled with an exponential random variable
(with parameter y) for the site becoming unavailable
for release. Under this model, the probability of
secretion of a quantum at one of the n release sites is

[/ (a+ )"

Phil. Trans. R. Soc. Lond. B (1995)

There are three main events involved in the process
of quantal secretion. Firstly, calcium ions must enter
through voltage-dependent calcium channels and
diffuse to the sites of vesicle exocytosis (Yamada &
Zucker 1992; Parnas ¢t al. 1989). Secondly, calcium
ions bind to a release site protein which may be
responsible when activated for generating a tension
that brings the vesicle and presynaptic membrane
together so that an early lipid fusion-pore forms
between the two membranes (Monck & Ferndndez
1992; Nanavati et al. 1992). Alternatively, the calcium
ions may bind to a fusion-pore protein that already
joins the vesicle to the release site, with subsequent
opening of the protein channel (Almers 1990). Finally
the lipid fusion-pore can expand irreversibly (Ober-
hauser et al. 1992), or lipids can invade the subunits of
the open channel leading to irreversible expansion of
the channel (Almers 1990); in either case exocytosis
occurs. It is natural to ascribe the different components
of the stochastic process to dfferent elements of the
secretion process. In this case, the influx of calcium and
its diffusion to the release site protein is associated with
the minimum latency (7) as originally suggested by
Katz & Miledi (19656); at a temperature of 3 °C this
is about 5 ms. The binding of calcium ions at rate a to
k different sites on the release protein, with the
probability of a bound calcium ion becoming
dissociated at rate y, may then be described by the
gamma variate 7 with parameters (e¢+1v,£), respon-
sible for the overall shape of the quantal secretion
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histogram. Although estimates for the rate constants o
and vy are not yet available for the release protein, rate
constants for the process that stops the release (y) are
probably about 1 ms™ at less than 10 °C (Yamada &
Zucker 1992). Finally, the irreversible opening of the
fusion-pore may be associated with the exponential
variate U with parameter ¢. This might be large, as at
room temperature the rate is likely to be of the order of
10 ms™ (Almers et al. 1989). Conditional on their
being no dissociation, the expected value for the time
to secretion (W) is

E(W) = k/(a+y)+1/8.

If § is large then the calcium reaction with the release
site protein is rate limiting, and this step may be
ignored in analyses; if ¢ is small, then the rate of
exocytosis becomes limiting (Bennett & Robinson
1990). The @,, of the minimum delay is high (about
three; Katz & Miledi 19656), as are the subsequent
delays that make up the histogram of the latencies of
quantal secretions (Katz & Miledi 19655; Barrett &
Stevens 197256; Bennett et al. 1977; but see Van der
Kloot 19884). This is to be expected if 7 is governed by
the kinetics of opening and closing of voltage-
dependent calcium channels, with 7" dependent on the
rates of reaction with the release site protein (et+7),
and U on the rate of irreversible opening of the fusion-
pore (8). To obtain estimates for these parameters from
both first and second quantal latencies, as well as from
the interval between them, analytical expressions have
been obtained for these probability distributions in the
first part of the present work, and maximum likelihood
techniques used to derive these estimates.

Although Barrett & Stevens (19724) found in most
cases no significant effect of first quantal secretion on
the probability of a second quantal secretion to the
same stimulus, they did obtain evidence for initial
depressive interactions on some occurrences, especially
at sites that had been previously active. Depressive
interactions were studied in detail by Baldo et al.
(1986). They found significant differences in the value
of & determined from second quantal latencies (o, (¢))
compared with that from the first quantal latencies
(o1(£)), indicating that the probability of secretion for
the second quanta was different from that of the first
quanta; the estimate of a,(f) was lower during the first
few milliseconds of the evoked secretion period relative
to a,(f). The problem of detecting second or later
quantal secretions, as a consequence of their being
obscured by the first quantal secretion, has been
pointed out by these authors but no analytical
technique has yet been proposed to cope with this
difficulty. As a consequence it is unclear whether
depressive initial effects do occur between quantal
secretions. In the second part of this work, an analytical
procedure is developed that allows for this detection
error in the counting of second quantal secretions.

The somatic motor-nerve terminals possess hundreds
of release sites from which quanta can be secreted on
arrival of the nerve impulse (Katz 1969). If the quantal
content of the endplate potential is used as a measure
of secretion from all these sites, then this does not
fluctuate much at secretion rates just subthreshold for
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the initiation of the muscle action potential. The
quantal secretion has a variance smaller than its mean,
contrary to what is expected for a Poisson random
variable (Bennett & Florin 1974; Wernig 1975;
Bennett & Fisher 1977). The discovery that different
release sites have markedly different probabilities for
the secretion of a quantum (Bennett & Lavidis 1979;
D’Alonzo & Grinnell 1985) would provide an ex-
planation for the small variance in quantal secretion if
a few of these sites had high probabilities and the rest
had very low probabilities (Bennett & Fisher 1977),
but this is not the case; although very low probability
sites do exist among high probability sites (Bennett &
Lavidis 1989), there are relatively large numbers of
high probability sites along the length of the terminal
branches (Bennett ¢t al. 1986). An alternative ex-
planation for the small variance in quantal secretion
depends on the existence of inhibitory influences that
propagate from a release site on secretion of a quantum.
For example, substances are secreted with the trans-
mitter that may mediate interaction between adjacent
release sites following the secretion of a quantum
(Jones 1987), although the rate and range of diffusion
of such substances is likely to limit their effects during
the secretion period to very few sites. Nevertheless,
activation of autoreceptors by these substances may
lead to a decline in the probability of secretion from
adjacent sites following quantal secretion from a
particular site. If this does occur within the early
secretion period following a nerve impulse it would
lead to an initial depression of quantal secretion as well
as a decrease in the variance of quantal secretion
(Bennett & Robinson 1990). This is investigated in the
present work by using the detection theory to de-
termine if the probabilistic secretion of second quanta
(ety(#)) is in any way depressed by the prior secretion of
the first quanta (o, (#)).

2. METHODS
(a) Housing of animals

Toads (Bufo marinus) ranging in length from 55 to
70 mm from tail to nose were maintained in a room
that was fitted with 159, ultraviolet lights. Lights were
turned on for 16 h per day. The temperature of the
room was maintained between 25 and 30 °C and the
animals were fed two times per week with a mixture of
minced meat and fish brittle.

(b) Tissue preparation

Animals were anaesthetized with tricaine methane-
sulphonate (MS222, Rural Chemical Industries
Australia) and then killed by a cervical fracture. The
right iliofibularis muscle with its nerve supply was
dissected from its surrounding connective tissue and
cut at its tendinous insertions. The muscle was then
pinned to Sylgard on the bottom of a 3 ml organ bath
with the surface where the nerve enters the muscle
facing up. The muscle was stretched to approximately
1109, of its resting length in the limb to form a flat
parallelogram. The preparation was continuously
perfused at the rate of 5ml min™' with a modified
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Ringer solution containing (mm): Na*, 117.0; K*, 3.0;
Mg®*, 10.0; Cl7, 122.7; H,PO;, 1.3; HCO;, 16.3;
Ca®", 0; glucose, 7.8. The temperature of the bath was
maintained between 1 and 4 °C. The reservoir sup-
plying the bath was continuously gassed with 959 O,
and 59, CO,, and the pH was maintained between 7.2
and 7.5.

(¢) Visualization of the nerve terminal

The preparation was left bathing in zero extra-
cellular calcium ion concentration for about 40 min
while contractions due to nerve stimulation dimin-
ished. The muscle was then bathed for 30s in 3,3-
diethyloxardicarbocyanine iodide (DiOC,(5), 0.1 mm;
Yoshikami & Okun 1984) and then washed with
Ringer for 10 min to fluorescently label accumulations
of mitochondria corresponding to the nerve terminal
branches. Excitation at 560 nm of the DiOGC,(5)
resulted in a fluorescence that was visible with use of a
Rhodamine filter set (Olympus BH2 microscope).
Terminals were chosen by viewing the fluorescent
image via an image intensifier camera (National) on a
video monitor (National). To avoid long periods of
fluorescing the preparation and the need for repeated
applications of DiOC,(5), the image of the fluorescing
terminals was traced onto the video monitor screen (see

Bennett et al. 1986).

(d) Stimulation

The iliofibularis nerve was gently sucked into a
pipette filled with the Ringer solution. It was then
stimulated by using square wave current pulses of
0.08 ms duration and 8 V amplitude. At least 200
samples of evoked release were recorded at 0.5 Hz for
each electrode placement.

(e) Recording

Extracellular recordings of the endplate current
were obtained by using microelectrodes filled with
Ringer solution containing zero magnesium ions and
10.0 mm calcium ions. The tip diameter of the
recording electrodes was about 2 pm. Focal extra-
cellular recordings were obtained by placing the
electrode about 2 to 3 um to one side of the terminal
branch. The intra-electrode solution was allowed to
diffuse freely out of the electrode forming a stream that
flowed over the terminal branch in the direction of flow
of the bathing solution. The extent of spread of the
intra-electrode solution over the terminal branch was
determined by the direction and flow rate of bathing
solution. The external signs of the endplate current
could then be observed on the oscilloscope screen while
the nerve was stimulated. In most cases small endplate
potentials could be seen within 20 impulses. The
electrode was then lifted off the muscle fibre and
moved in either direction along the same axis as the
terminal branch until the source of these small endplate
currents was located (this procedure involved searching
for the most active release site). The external electrode

Phil. Trans. R. Soc. Lond. B (1995)
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Figure 1. Focal extracellular recordings of endplate potentials
taken from a proximal site on a DiOC,(5) visualized motor-
nerve terminal. The temperature was 7.0 °C. The numbers
refer to the particular trial during stimulation of over 200
trials.

was then lifted again off the muscle fibre and moved
transversely to improve the recording of the nerve
impulse. Two hundred samples of the evoked release
over 7 min were recorded.

Endplate currents were recorded by using focally
placed electrodes and collected on an IBM-AT
microcomputer with use of p-clamp software (Axon
Instruments). Examples of recorded extracellular
potentials are shown in figure 1. To be able to measure
potentials from individual quanta, the preparation was
kept between 1 and 4 °C. Since the background rate of
spontaneous potentials was very low, it would not
adversely affect results by assuming all the quantal
secretions were from evoked potentials.

3. THE FUSION-PORE MODEL OF
QUANTAL SECRETION

In this section, the probability distributions for time
till first and second quantal secretions, together with
the interval between them, will be derived by using the
fusion-pore model.

Consider a branch of a neuron terminal with a finite
number of release sites, n, at locations x,x,,...,x

MRS (3

assumed to lie in the interval [0, 1]. As indicated in
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Bennett & Robinson (1990) (their equation (1)), the
cumulative probability of the time to release for the site
at x, is given by the gamma form,

m%n=(“w>)cmum+%@,

a(x)+y
where a(x,) is the rate of calcium ion binding in the
release site located at x;, £ is the number of binding
steps and 7y is the dissociation or failure rate of the
process. G(t;a(x;) +7, k) 1s the cumulative distribution
function of a gamma random variable with parameters
(a(x,) +7v,k). If the time for opening of the fusion-pore
is also included (an exponential variate with rate §),
this rate should be modified to

ﬂ%o=(“m)

k
— 3J‘G t—uja(x,) +vy, k) e du.
a(xi)+')’) 0 ( () 7, 4)

If the fusion pore opening time is fast (large §), then
this expression for p(x,t) approaches the previous
expression. It has been assumed for the model fitting
process that the fusion-pore opening is fast. By letting
the number of release sites increase to infinity and the
release probability p(x,, ¢) approach zero, the expected
number of all quantal secretions up to time ¢ is

Alt) = Ay Gl v, b,
or

Ak‘ 17 B
AU)=(;)3J(KFﬂu7$)€“dm

fusion-pore opening time being taken into account,
where A* is defined as the constant, lim,,_, 27" a*(x,),
and

n—>00

t

G(t;y, k) = J g(usy, k) du,

0

t>0,
where

k
Y k1 -
Ly k) =S—t"e, t>0.
g( !’y! ) r<t> >
Note that A is consequently a measure of the calcium
binding rate across the entire neuron terminal branch.

The expected total number of quantal releases is given
by

A(o0) = (A/y)".

This expression for A(c0) is the same whether or not
time for fusion is taken into account. In fact, provided
that & is greater than A and 7, there is very little
difference in the form of the rate functions, A(f), for all
elapsed times, ¢.

The instantaneous rate is

Aty = (A/y)*g(t; v, k),

or

/\ k t

Alt) = (—) BJ glt—u;y, k) e du
o 0

including the time for fusion, where A(¢) dtis (approxi-

mately) the expected number of secretions in the
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time / ms

Figure 2. Examples of distributions of 7, (solid line), 7,
(broken line) and §; (dotted line) based on the fusion-pore
model. The parameters set for this model were A = 3 ms™,
¥ =3 ms™ and k£ = 5. Note that the area under each curve
corresponds to the probability of observing a ¢, ¢, or s, in

finite time.

interval (¢,t4+dt). The quantal secretion rate is not
necessarily constant along the length of the neuron
terminal; so the rate may be expressed with a spatial
component, A(x, t), where A(x, ) dx is (approximately)
the expected number of quantal secretions up to time
¢t in the element of terminal [x,x+dx]. It will be
assumed that the time and location of secretion are
independent, and so may be expressed as
A(x,t) = 0(x) A(t), where 6(x) is the probability density
function for the location of the quantal secretion
0<x<1). A beta form may be used,
0(x) = [B(a,b)]™x* (1 —x)"1,0 < x < 1 (see Bennett
& Lavidis 1979). However, when a relatively small
length of neuron terminal is investigated, a uniform
form (¢ = b = 1) may be a reasonable approximation,
and this will be assumed in the sequel.

The following section outlines the probability density
functions and other probability terms for times of
quantal secretions. They are shown with the general
expressions for A(¢) and A(¢). The probability density
function for the time until the first release (77) is

le(t1) =A) exp[—4(t)], >0, (1)
and an illustration of this distribution is shown in figure
2, along with the other time course distributions. The
distribution of 7; is improper; that is, it does not
integrate to one. The probability of no secretions in
finite time (7] = 00, no first secretion) is

P(T; = o) = exp [~ A(0)]. (2)

The conditional probability density function of the
second secretion, T,, given T; = ¢, is

fT2<t2|tl) = Aty) exp{—[4(t) —A(t)]}, >4, (3)
and the conditional probability of no finite 7, is
P(T, = o| T, = ty) exp{—[A(00) —A(#)]}. (4)

The joint probability density function for the dis-
tribution of the first two secretions (73, 73) is

Jrlti ty) = A(ty) A(ty) exp [— A(t,)], 6, > 4,4, >0,
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Table 1. Descriptive statistics for the first four releases (1,
i1=1,...,4) and intervals between releases (s, =t,.,—1,
i=1,...,3)

(Units of time are milliseconds.)

size mean s.d. min. max.
4 696 6.626 0.575 5.46 10.08
Ly 304 7.354 0.683 6.09 10.01
ly 66 7.868 0.573 6.79 9.66
{ 6 8.690 0.863 7.34 9.80
5 304 0.932 0.530 0.28 3.15
Sy 66 0.960 0.437 0.39 2.38
Sy 6 1.008 0.647 0.41 2.24

and from this the marginal probability density function
of 7, is obtained as

Jr(ls) = Alty) A(ty) exp [=A(2)],

The probability density function of the interval
between the first two secretions, S; = 7,— T;, is

ty, > 0.

fsl(51> = joofT(tv si+t)dy

= J A(t)A(sy +8)exp[—A(s; +4)]dy, s> 0.

0

For the experimental data analysed, an additional
parameter was required, a time lag, 7, to account for
the minimum synaptic delay following stimulation.
The effect of this is to move the time origin to the right,
and so time may be written as ' = {—7 to reset the time
origin at zero (for example, A(') = A(t—7) for ¢ > 7).

(a) Failure of the fusion-pore model to predict
second quantal latencies

Thirteen experimental data sets have been analysed,
but detailed results will only be given for the first of
these sets, in this model and subsequent ones. A
summary of the results of all the data sets will be
included later (§6). For the first data set, times of
secretion for first, second, third and fourth quanta from
the release sites are shown in table 1. These sites had a
frequency distribution of the total number of quantal
secretions (f;;¢=0,...,4) f, = 104, f; = 392, f, = 238,
/3 =60 and f; = 6, giving a mean of 1.340 quanta and
a variance of 0.680. By using the maximum likelihood
procedure (see appendix B), the parameter estimates
from the data based on 696 finite ¢, and 104 infinite ¢
were A =4.96ms", §=460ms", £=9.44 and
7 = 4.92 ms. However, Monte Carlo simulation studies
have demonstrated a high degree of linear correlation
between these parameter estimates, leading to their
unstable estimation. Given that the mean value of £ for
all 13 sets of experimental data was 5.40 (with a
standard deviation of 2.88), which was close to the
hypothesized number of calcium ion binding steps
(five, see §7), k was forced to be equal to five in this and
the other twelve analyses of experimental data. When
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Figure 3. Comparison of the observed times of quantal
secretions (histogram) with that of the predicted distributions
(solid line) according to the fusion-pore model. Times are for
the first quantal secretion (f;), second quantal secretion (4,)
and the interval between first and second quantal secretions
(s, = ty—1,). Estimates of the parameters in the model were
obtained from the first quantal secretion times in experiment 1
(A=3.39ms™, y=294ms™" and 7 = 5.33 ms). The data
are also from experiment 1.

this was done, the parameter estimates changed to
A=339ms™", 7=294ms" and 7 = 5.33 ms. Inclu-
sion of second release times changed these estimates
slightly (A =323ms™, 7=301ms! and 7=
5.28 ms). Based on these estimates, the theoretical
distributions of t, ¢, and s, =t,—¢, have been cal-
culated and these along with the histograms of the data
are shown in figure 3. The fit of the time till the first
quantal secretion is very good, whereas the fit to the
second secretion is poor, as is that to s;. In particular
the histogram for s; shows that there are no quantal
secretions that occur shortly after the first. The good
predictions for # but not for ¢, or 5, were the same for
all thirteen experiments. This may be due to the
difficulty of detecting two or more quantal secretions
that occur in quick succession following a nerve
impulse, as previously noted by Barrett & Stevens
(1972a) as well as Baldo et al. (1986). A theory to
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account for detection of quanta following the first was
therefore developed.

4. THE FUSION-PORE MODEL WITH
ALLOWANCE FOR DETECTION OF
MULTIPLE QUANTAL SECRETIONS

Experimental evidence indicated that there is a
minimum synaptic delay during which no detection is
possible and after this, a period in which the signs of
quantal secretion may be masked by prior secretions
(Katz & Miledi 19654, b). The experimental pro-
cedure used for detecting a quantal secretion is to
determine the time at which the endplate potential
starts to increase towards a maximum; however if the
start of increase of a second endplate potential occurs
before the first has reached its maximum then the
second secretion will be masked and therefore not
detected. Empirical treatments of this process have
been attempted (Baldo ¢t al. 1986) but a theoretical
basis for this process is required. A cylindrical version
of cable theory provides the theoretical model for this
process.

(a) Quantal secretion on a two-dimensional cable

In their original description of the extracellularly
recorded electrical signs of quantal secretion, del
Castillo & Katz (1956) noted that ‘the extracellular
currents, therefore, converge from the large surround-
ing surface of the fibre into a highly localized region’ so
that one may consider ‘an active spot equivalent to a
small hole in a large sheet of insulating membrane’. At
this level of spatial resolution, with the recording
electrode localized to the active spot, current flow due
to the action of the transmitter quantum must be
considered as occurring initially in a two-dimensional
sheet. This is in contrast to focal intracellular recording
of the endplate potential in which the current flow can
be described simply in terms of the spread of charge
along a one-dimensional fibre (Fatt & Katz 1951). The
following theory is then developed for the spread of
charge applied instantaneously at a point on a cable of
non-negligible diameter, so that current flows both
transversely and along the length of the cylindrical
cable. The theory is an extension of standard linear
cable theory (Hodgkin & Rushton 1946; Tuckwell
1988). Only a deterministic version of cable theory will
be used in these models. Incorporating random sources
of variability in potential would considerably increase
the level of mathematical analysis required, whereas
the main use of cable theory here is to explain the
detection-error problem, rather than to model ac-
curately the electrical potential.

The potential at any point on the surface of the
‘cylinder’ will first be derived, based on the assumption
that the current has been delivered as an instantaneous
point charge. However, the actual miniature endplate
current is not delivered as an instantaneous charge but
rather as a (fast) time varying function. A commonly
used model for this function is I(¢) = Qa?ie™ (Jack et
al. 1975; Tuckwell 1988), where Q = [ I(z)d¢ is the
total charge delivered by the quantum and e is the rate
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constant. The potential resulting from the current
function, (), will then be obtained as the convolution
of this current function with the potential resulting
from the instantaneous charge (Green’s function).

The length of neuron terminal will be approximated
as a cylinder of infinite length. Define the coordinates
of a point on the surface of the cylindrical fibre as
x = (%,%) (mm), —o0 <x <0, —nr<x, <A,
where 7 is the radius of the cylindrical cell (mm). Next,
define the following electrical constants: r,, extra-
cellular resistance per unit length (@ mm™); 7,
intracellular resistance per unit length (Q mm™); r,,
membrane resistance multiplied by wunit length
(2 mm); ¢,, membrane capacitance per unit length
(F mm™).

Also, define the following electrical variables: 7,
potential in the extracellular fluid (V); V], potential in
the intracellular fluid (V); V,, potential difference
across cellular membrane (V); I, total current applied
extracellularly (A).

All these quantities are functions of time ¢ (ms) and
location x = (x;,%,) (mm). The membrane potential
V= Vo(xq,%5,t) as a result of a unit charge delivered
instantaneously at the origin # = (0,0) at time ¢ = 0 is
Vm(xlsxm t) = m e CXp(—

given by
=)
Te + Ty m ‘m

(7e+71) Cm % (Te+ri> ‘m x%
Sl e e |

(re+7) ) 2 (ro+7,) 60y — 2mrk)?
[ B e
(5)

(see appendix Aa for proof). The solution can be
considered as being the product of three components:
an attenuation component, a gaussian component
along the length of the cylinder and a ‘wrapped’
gaussian component around the circumference of the
cylinder.

However, it is not the potential difference across the
membrane that is recorded, but the extracellular
potential, in the present situation. In general, the
relation between the potentialsis given by V,, = V,— ¥,
but in the ‘extrapolar region’ (away from where the
current charge was delivered), V, = [(r,+71)/7.] V.
(see Hodgkin & Rushton 1946). So V, can be calculated
as

Ve = re/(re+ri) Vm'

It is now assumed that, if a quantum is released, it
will be received at the nearest point on the ‘cylinder’
that is along the line x, = 0. By writing y for x; and
setting x, to zero, the Green’s function for a point
release at the origin is obtained from (5) as

4

r

Gly,t) =7, (re;r)z ((’e : ;t) cm>

. 4 . (7e+71) Umyz
X exp( Toy Cm 4¢
© 2
y [1 +o s exp(_(re—l—ri) ¢ (2T00K) )]
k=1 4t
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Figure 4. The potential based on a two-dimensional
(cylindrical) cable model, due to injection of current at a
point according to /(f) = Qo*te™. The upper figure shows
the time course of the potential V(y, ¢) at varying longitudinal
distances between the recording electrode and point of
injection, y(oe = 6.25 ms™* in all traces). The curves are for
releases at y = 0.0025, 0.0050, ..., 0.025 mm, with the release
at 0.0025 mm being the top curve. The lower figure shows
the time to reach maximum potential and decline by an
amount 4, t*(y), as a function of this distance. These curves
are shown for different values of the decline amount, 4,, = 0,
0.0005, ..., 0.005 mV, with no decline, 4, = 0 mV, being
the bottom curve.

Next, the extracellular potential can be calculated
from the convolution of I(¢) with G(y,?) (see appendix
A} for details). For simplicity, the subscript e will be
dropped from the V. That is,

t
Viy,1) = f Gly,t—s) I(s) ds.
0

Qualitatively, the time trace of V(y,¢) is similar to that
of I(t) but takes longer to reach its maximum (after
t = o). Further, this maximum occurs later and the
value declines as |y| increases (figure 4). For the
detection process, the following numerical functions
are defined. Firstly, let #(y) be the time to reach its
peak potential, for a quantal secretion at distance y
away from the recording electrode. Secondly, let #*(y)
be the time required (for a quantum at distance y) for
the potential measured at the origin to have reached
peak potential and then declined by an amount 4,,.
The earliest that a second quantum could be detected
is at time £*(y) after the first release (at distance y) has
begun.
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Examples of t*(y) curves are shown in figure 4. As
well as t*(y) increasing monotonically with y, it is seen
that increasing the amount 4, increases the amount of
time required to drop to this level.

In addition, the inverse of the function t*(y) is also
required, labelled y*(¢). Itis the distance y at which the
potential is maximized and declined by an amount 4,
as a function of time ¢ That is, it is the location of a
(first) quantal release that will just allow a release
occurring at time ¢ later to be detected.

(b) Detection of multiple quantal secretions on a
two-dimensional cable

The next point to consider is the probabilistic model
for detection. As quantal secretion was confined to a
small length of a single terminal branch, by localizing
calcium to this length, this secretion is assumed to
occur within a spatial corridor of length +4,. The
probability of secretion from a release site Y within
+4, will be taken as being uniform; that is, ¥ is a
uniform random variable on [—4,, +4,] and |Y] is
uniform on {0,4,].

As before let s; = ¢, —¢; be the time interval between
the first and second release and let g, be the location of
the first release. Let 2 be the event that the second
release is detectable; that is, the second release occurs
after the first reaches its maximum potential, and
declined by 4,,. Then,

{1 51> (yy)

0 0<s5 <t*(y)

P(D s, 41) =

{1 lyal <y*(sy)
0 y*() Syl <4,
So for a second quantal release, detection depends on
both the interval between quantal releases and the
location of the first quantal release. That is, increasing
elapsed time (s;) increases the probability that the
second quantal release will be detected ; similarly, more
distant first quantal releases (large y,) reduce the
probability of a second release being detected, owing to
the altered shape of the potential function as predicted
from the cable equations.

Next, the probability that the second release will be
detected given that it occurs at time s, after the first
release is

P(2]s) =J

+4

1
5 P @ siy1) dy
Ay 2Ay 1»J1 1

1 5, > t%(4,)
= 1(1/4,)y*(s;) t%(0) <5y < 1%(4,)
0 0 <5, < 1%(0).
With an asterisk indicating joint distributions with
2, the improper densities and probabilities of no

release are as follows. The conditional probability
density function of 7, given 7] = ¢, is

f;',;(tzlﬁ) :sz(t2|t1>P<9|t2—t1>J ly>t,+1%(0)  (6)
and the conditional probability of no finite 7 is
PH(Ty= 0| T; =1,

= I_J sz(tz |t) P(2|t,—t,)dt,. (7)
t,+t*(0)
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Figure 5. Comparison of the observed times of quantal
secretions (histogram) with that of the predicted distribution
(solid line) according to the fusion-pore model with detection-
error correction. Times are for the second quantal secretion
(t,) and the interval between first and second quantal
secretions (s, = t,—1,). Estimates of the parameters in the
model were obtained from the first and second quantal

a

secretion times in experiment 1 (A = 3.38 ms™, § = 2.91 ms,
7=5.33 ms and 4, = 0.00232 mV.

The joint probability density function of (713, 7;) is

JT(tty) =fT1(t1)fT2<t2|tl) P(D|ty—t),t,> 1,4, >0

and from this the marginal probability density function
of 7, is obtained as

to—t*(0)
fz(tz) = f le(tl)sz(tz [4,) P(2|t,—t,) dty,

0
t, > t*(0).
The probability density function of §; = T, — T; is now

f:l(fl) =fsl(51)P(@|51>: 5> t%(0).

(c) Success of the fusion-pore model with allowance
for detection errors in predicting second quantal
latencies

The detection error model was fitted to the same
data set described in §3a. For the reasons given there,
k was set at five. The following electrical constants for
the cable theory were taken from Hodgkin & Nakajima
(1972, set 2): r=10.04 mm, r, =3.37%x10° Q mm™,
7= 1.22x10°Q mm, ¢, = 1.56 X 107® F mm™. From
Hodgkin & Rushton (1946), 7, =0.81 x7, Q mm™!
based on the average of 13 experiments; so
r,=2.73x10° Q mm™. The total quantal charge is
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taken as 107! C, and the window width for quantal
detection is taken as A4, = 0.025 mm. Based on the
likelihood surface, it is evident that the parameter
estimates for o and 4, are highly positively correlated.
Consequently, « was set at 6.25 ms™, based on quantal
current data in Gage & Armstrong (1968).

By using the estimates obtained in §3a for A, y and 7,
4, was estimated by maximum likelihood as
0.00232 mV. Full likelihood produced negligible
changes to estimates (A =3.38ms™, 7 =291 ms™},
7=5.33 ms, and 4, = 0.00232 mV).

The fitted distributions and histograms of the first
experiment, based on the estimates of A, y, 7 and 4,
are shown in figure 5. The fit of the time till the second
quantal secretion is now much improved, although the
model does not predict the extreme peak of the density.
The fit to s; is also much improved.

5. THE FUSION-PORE MODEL WITH
AUTOINHIBITION AND ALLOWANCE FOR
ERRORS IN DETECTION IN MULTIPLE
QUANTAL SECRETIONS: THE COMBINED
MODEL

Good predictions of all the latency—frequency distri-
butions for second and later quanta were obtained
once allowance was made for errors in detection.
However, it is still possible that the predictions could
be improved if a scheme that incorporates the
autoinhibition of quantal secretion by previously
secreted quanta within the period of increased prob-
ability of secretion following a nerve impulse. For
example, detection errors may result in early second
quantal secretions not being seen, and inhibition may
result in late second quantal secretions not occurring.
To see if this is the case, an autoinhibitory model is first
developed (§5a4) and this is combined with the
detection error model to give a combined model (§55).
This is then used to test if a finite autoinhibitory
mechanism can be detected (§5¢).

(a) The autoinhibitory model

Bennett & Robinson (1990) described a theory of
autoinhibition whereby later quantal secretions would
be impeded by earlier ones. Figure 6 shows the
interaction between release sites resulting in auto-
inhibition. The ordinate shows the position of the
release site [0, 1], and the abscissa the time of release
[0,00]. Sites that secrete a quantum of neuro-
transmitter also initiate an inhibitory process. This
inhibitory influence spreads at a linear rate v so that
any point within the ‘cone’ will be prevented from
releasing neurotransmitter.

The probability distributions for release times for the
autoinhibition model will now be outlined. The
distribution of the time till first secretion, 7;, will be as
defined for the fusion-pore model. With the first
quantal secretion at (x,f), define the indicator
variable for the inhibition of a secretion at (x,,1,),

]¢(xls Xgy bys Ly)
1 if (x,,t,) is in the area free from inhibition
= L0 otherwise
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1

location of site (X)

0 T, T,
time (7)

T+ X,lv

Figure 6. Graphical representation of the model of inhibition.
The first quantal secretion is at (X}, 7;), and an inhibitor
spreads out linearly in both directions at rate v. A release at
time 7; would be locked if it were located on the broken line;
otherwise it would release and also produce an inhibitory
spreading ‘cone’. No releases are possible after time
T+ X, /v

and let

1

Play, by by) = j 1¢(x1,x2, by, ty) dity

0
= max [x, —v(t, —1,),0]
+max [1—x—v(t,—1),0],0 <x, < 158, > 1.
Also define the cumulative rate function,

ty

A¢(t2|x1, L) = j Auy) Plxy, by, up) du,,

tl
and instantaneous rate function,

Aglly 2y, 1y) = d[Ay(ty, | 21, 14)]/dly.

A subscript ¢ will be used here to indicate the
autoinhibition model as opposed to the basic fusion-
pore model and detection-error model. The conditional
probability density function of 7; given T; = ¢, is

1
onltlt) = f At 1) exp [ — Ayt |11, 1)] dity,
0

h<ty<t+1/v.
The probability of no further releases after time ¢, is
obtained by observing that no further releases can
occur after time ¢, + 1 /v, that is,

1

1;(7;=oo|Tl=t1>=f

0

1
exp[—/ld,(t1 +; x1, tl)] dx,.

The joint density of (7, 7;) can be calculated as
Jorlt, by) =fT1(t1)f¢T2(t2 l4), h<ty<t+1/v,4,>0,
and the marginal probability density function of 7, is
t?

St = |

max (t,—1/v, 0)

j;ST(tla tz) dtl, tz > 0

Also of interest is the distribution of the time interval
between successive releases, $; = 7,— 77, and this has
probability density function

@ 1
f;ssl(Sl) = f f(}}T(t1751+t1) dy, 0<s< P
0
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Note that this autoinhibitory model considers the
Poisson limit as the number of release sites, 7, tends to
infinity and the calcium ion binding rate, a(x,), tends
to zero (and the probability of release tends to zero).
Consequently, the probability that any one site would
release more than one quantum is vanishingly small,
regardless of the value of v. So, under this model, it is
not appropriate to consider a situation of auto-
inhibition within a single release site. However, in a
model with a finite (small) number of sites, this
situation could be considered.

(b) The combined model

Calculation of density and probability expressions
for the release times follows in the same manner as for
the detection error model; so relatively little new
material needs to be derived. Essentially, these
expressions are obtained by using the inhibition model
terms, fys (51) and fyr, (21 ¢;) in place of the basic model
terms, fs (s;) and fr (¢ ]4), and substituting these in
the expressions for the detection error model.

With the * and ¢ notation to indicate joint
distributions with &, and with inhibition, the following
expressions are obtained. The probability density
function for the second release, given the time of the
first release, is

f;sz(t2|t1) =f¢7’2(tz|t1) P(D|t,—t),
L) <ty <t +1/v, (8)

and the probability of no (finite) second release, given
the time of the first release, is

PY(T, = o | Ti—t)
t,+1/v
= I_J f¢T2(t2lt1) P(@|t,—t)dty. (9)
£,+8%(0)
The joint probability density function of (73, T;) is
f:bkr(tv ) =fT1(t1)f¢ Lty t,) P(D | t,— 1),
ty >t +1%(0),4 >0,

and from this the marginal probability density function
of T, is

ty—t*(0)
f;sz (ty) = J

max [t,—1/v, 0]

f’l’l(tl)j;;ﬁ’l’z(t2 | tl) P(@ | t2—t1) dtp

t, > 1*(0).

The probability density function of the inter-release
times, $; = T,— T3, is

f;ksl(fl) =f¢sl(51) P(D|sy), t*(0) <s; <1/

(¢) The combined model estimates autoinhibition as
zero

With use of the estimates of the main time course
parameters (A, v, £ and 7) obtained in §3a, together
with the detection error parameter (4,,) given in §4c,
the likelihood of the data was maximized to estimate v.
For the first experiment this gave ¢=0mms™,

indicating no detectable autoinhibition. Full likelihood
maximization of all parameters returned the same
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Table 2. Parametric bootstrap of the parameter estimates for the experimental data

(Bootstrap values based on 200 simulations for estimation of (A, v, 7, 4,,) and ten simulations for estimation of (A, v, 7,

4y, v).)

parameter  estimate bootstrap mean bootstrap s.e. bootstrap 959, c.i.
A (ms™) 3.39 3.39 0.0866 3.24-3.54

v (ms™) 291 2.92 0.789 2.78-3.05

7 (ms) 5.33 5.33 0.262 5.29-5.37

4, (mV) 0.00232 0.00231 0.000370 0.00170-0.00293
v (mms™) 0 1.5 1.5 —

Table 3. Descriptive statistics for the first four releases (1;;
t=1,...,4) and intervals between releases (s, = t,,1—1;;

i=1,...,3)

(Comparison with a Monte Carlo evaluation of 10000
simulations. Units of time are milliseconds.)

mean s.d.
data simulation data simulation
4 6.626 6.642 0.575 0.623
t 7.354 7.442 0.683 0.688
ty 7.868 8.015 0.573 0.694
t 8.690 8.474 0.863 0.651
5 0.932 1.034 0.530 0.563
Sy 0.960 0.978 0.437 0.540
Sg 1.008 0.932 0.647 0.483

estimates. Thus the fusion-pore model with detection
errors is alone sufficient to model the data of the first
experiment.

As a check on the accuracy of these parameter
estimates, a small scale parametric bootstrap procedure
has been done. The parametric bootstrap is useful
when the underlying distribution can be assumed, but
its properties (such as bias and standard errors of
estimators) are too difficult or intractable to obtain
analytically (Efron & Tibshirani 1986). Details of this
procedure can be found in appendix C, but essentially
it involves generation of data from the model with its
parameter estimates to obtain a new set of estimates for
each set. After sufficient sets have been obtained, the
mean of the estimates can be used to assess bias, and
the standard deviation taken as an empirical standard
error of the original parameter estimate. Ideally, a
large number of sets of data would be generated, but,
owing to the computation required, estimation of A, 7y,
7 and 4, was limited to 200 times, and v ten times.

For v, the ten estimates (in sorted order) were 0, O,
0, 0, 0, 1.45, 1.70, 3.55, 3.60 and 4.20 mms™),
confirming that the amount of inhibition is small, if it
occurs at all. For the other parameters, it is seen that
there is negligible bias in their estimates (see table 2).

To examine the fit of the model, a Monte Carlo
simulation (N, = 10000) was done with these par-
ameter estimates. This will allow the model predictions
for the third and fourth releases, as well as the first two,
to be compared with the data. This is useful since none
of the information in f; and ¢, was used in parameter
estimation. Table 3 shows the times of releases,
indicating good agreement for the ¢ and the s. The
frequency distribution of the number of releases is

Phil. Trans. R. Soc. Lond. B (1995)

Table 4. Frequency distribution for the number of quantal
secretions

(Comparison with a Monte Carlo evaluation of 10000
simulations.)

relative frequency

number of

secretions frequency data simulation
0 104 0.130 0.130

1 392 0.490 0.455

2 238 0.298 0.341

3 60 0.075 0.068
4+ 6 0.008 0.006
mean 1.340 1.365
variance 0.680 0.664
ratio 1.970 2.056

shown in table 4. A goodness of fit test shows no
significant departure of the model from the data
(x*= 747,df = 4, P=0.113). Note that the model
also predicts the relatively small variance compared
with the mean.

Since it is possible that the zero estimate of v in this
data set (and others) might be due to a bias or inability
to detect a non-zero value of v, an additional Monte
Carlo study was done to assess the estimation of v. The
inhibition parameter » was varied from 0 to
12.5 mm s™" in steps of 2.5, with five replicates at each
value of v. Even at v = 2.5 mm s all five replicates
gave non-zero values of ¢ (with an average of
3.9 mm s7'), which suggests that this method would
detect inhibition, if it were present in the data.

6. ANALYSES OF OTHER DATA SETS

In addition to the main data set analysed here,
twelve others have been provided, and all but the last
four were for identical experimental conditions. The
parameter estimates for the combined model are shown
in table 5. The main feature is that in all data sets v was
estimated as zero. In addition there is evidence that the
main time course parameter estimates (A and 7) are
positively correlated (r = 0.93), as was also suggested
by the Monte Carlo study noted in §3a.

Also shown are the histograms and fitted distribu-
tions of these data sets (figure 7). All these graphs have
been drawn to the same vertical and horizontal scales.
In general the fit of the model to these sets of data is
adequate. However, as with the first data set analysed,
there are instances when the peaks in the histograms
are not fully reproduced by the fitted distributions.
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Table 5. Parameter estimates for thirteen experimental data
sets

(The sample size for each data set is » (number of stimuli).)

a ~

i A v 7 4,
data
set  n mm s ms? ms! ms mV
1 800 O 3.38 2.91 5.33 0.00232
2 198 0 2.49 2.21 4.64 0.00371
3 196 0 3.28 2.86 4.87 0.00271
4 800 O 1.59 1.54 4.14 0.00311
5 400 O 3.73 2.86 3.32 0.00268
6 400 O 3.78 2.93 3.44 0.00789
7/8 800 O 2.72 2.13 3.55 0.00821
9 800 O 3.49 2.86 3.79 0.00899
10 800 O 2.41 2.11 3.15 0.00545
Fl 400 O 3.66 3.39 3.72 0.00507
F2 400 O 3.49 3.47 3.98 0.004 34
F3 400 O 4.16 3.48 4.00 0.001 34
F4 400 O 4.23 3.42 3.97 0.00191

7. DISCUSSION AND CONCLUSIONS
(a) The probabilistic model of secretion

The stochastic model used in the present work has
been developed in terms of transmitter secretion
consisting of three processes. Firstly calcium enters
through voltage-sensitive calcium channels and then
diffuses to the release site protein, a process that is
taken as primarily responsible for the minimum
synaptic delay (7), estimated in the present case as
5.3 ms at about 3 °C. The mean open time of N-type
calcium channels expected during a nerve impulse at
this temperature is several milliseconds (Delcour ef al.
1993), during which calcium diffuses from the open
channel to reach a near peak concentration at the
release-site protein (Yamada & Zucker 1992). The
second process involves attachment of the calcium ions
to k sites on the release protein and its subsequent con-
formational change, a procedure that has been taken
as mostly responsible for the time course of the quantal
secretion histograms, with the possibility that a bound
calcium will become dissociated at rate y determining
the possible termination of the process; £ was estimated
as 5.40 and y was 3.0 ms™" for thirteen sets of release
sites. There have been several different approaches to
evaluating £, from about four in the early work of
Dodge & Rahamimoff (1967), to five in the more
recent research of Zucker & Fogelson (1986), and four
in that of Augustine & Charlton (1986). The procedure
for estimating £ in the present work offers a value close
to these. On the other hand there have not yet been
investigations of the calcium binding protein kinetics,
perhaps because synaptotagmin and GTPase Rab3a
have only recently been recognized as the likely
strategic calcium binding proteins in this process
(Popov & Poo 1993; Johannes ¢t al. 1994). Nevertheless
the dissociation constant that terminates secretion has
usually been given a value of about 1 ms™ at 10 °C in
other simulations of the secretory process, similar to the
estimate in the present work for y of 3.0 ms™ (Yamada
& Zucker 1992). Finally the question arises as to the
time taken for the final step of exocytosis (rate constant
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& above), which in some recent deterministic models
has been taken as the rate limiting step in the secretory
process (Parnas et al. 1989; Yamada & Zucker 1992).
This has not been taken to be so in the present
stochastic model, as 4 is likely to be large (of the order
of 10 ms™; Almers ¢t al. 1989), even if the time course
of exocytosis is determined by the ‘stand alone flicker’
of the fusion-pore (Neher 1993), in which transmitter is
released through the pore without the vesicle under-
going complete fusion (Alvarez de Toledo et al. 1993).
One caveat in the estimates of the parameters in the
present model is that there are positive correlations
between estimates of A, y and £, indicating that any
particular value of one of these parameter estimates
may not be considered in isolation from the others.
Furthermore, the possibility that following quantal
release a site becomes transiently refractory to further
quantal release has not been considered in the model.
Rather, the Poisson limit has been taken of a very low
probability of release from a single site, so that the
probability of two releases is negligibly small. The
incorporation of a possible refractory state in future
developments will require abandoning the Poisson
limit.

(b) Comparison with other models of secretion

Deterministic models of the secretory process have
been developed, based on various assumptions. Van
der Kloot (19884, b) suggested that there are three
main elements in the process. The first involves calcium
entry, its diffusion to the release-site protein with
subsequent binding to the protein; this rate was taken
to follow a gaussian form. Next, the release site protein
undergoes a conformational change which occupies a
relatively set time interval and is therefore responsible
for the minimum synaptic delay of about 1.2 ms at
10 °C (Katz & Miledi 19654). Finally, exocytosis
occurs according to a first order process, with a time
constant of 1.3 ms at 10 °C. This high @,, of the
synaptic delay (Katz & Miledi 19655) is then
attributed to the conformational change in the release-
site protein. The influx of higher than normal levels of
calcium ions into the terminal produced by exposure to
4-aminopyridine increases quantal output and
increases the time-to-peak, without altering signifi-
cantly the time course of decline of quantal secretion
following an impulse (Van der Kloot 1988%). This
observation is consistent with the Van der Kloot model
in which the rising phase of the probability of secretion
is mostly determined by the binding of calcium to the
release-site protein with subsequent conformational
change, whereas the declining phase of the probability
is mostly limited by the time for exocytosis. Other
deterministic models of secretion also divide the process
into three steps, but regard the final step, namely
exocytosis, as rate limiting and primarily responsible
for the minimum synaptic delay (Parnas et al. 1989;
Yamada & Zucker 1992). This emphasis arises as a
consequence of considerations concerning the high
temperature dependence of release being determined
by the exocytotic process. The present model has also
ascribed three discrete steps to the release process but
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exocytosis has not been taken as rate limiting. Rather
the binding of calcium ions and the subsequent
conformation change in the release-site protein are
primarily responsible for the early release period,
which is more like the Van der Kloot (19884) model,
as argued in §7a. This conformational change may be
the major temperature sensitive process in release (see
also Yamada & Zucker 1992), rather than exocytosis
(Monck & Ferndndez 1994). The present work shows
that this model gives good predictions for the timing of
third and fourth quantal delays (as well as the first
two), with use of just the first two quantal delays to
estimate the parameters of the model.

(¢) Binomial statistics of secretion and
autoinhibition

Quantal secretions from the entire motor-nerve
terminal deviate from the predictions based on an
underlying Poisson process, more closely following that
of a binomial process (Wernig 1975; Bennett et al.
1975; Bennett & Fisher 1977; Bennett & Robinson
1990; compare with Wernig 19724, b and Zucker
1973). One possible explanation offered is that fol-
lowing quantal secretion at a site, an autoinhibitory
influence propagates from there to prevent secretion at
adjacent sites thus decreasing the variance of quantal
secretion from the terminal (Bennett & Robinson
1990).

Such a mechanism would also provide an ex-
planation for the experimental observations on the
effects of calcium ions on the binomial parameters n
and p describing quantal secretion from the whole
terminal as well as the relative constancy of p during
facilitation and depression of quantal secretion
(Bennett & Robinson 1990). In the present work, an
analytical procedure has been introduced for deter-
mining the probability that a second quantal secretion
will be detected given that it occurs at a specified time
after the first secretion. This procedure, together with
the stochastic model of the secretory process, gave a
satisfactory prediction for the mean times for secretion
(and standard deviations) involving third and fourth
quanta, when the parameter estimates were deter-
mined from the first two quantal latencies. Com-
bination of this approach with the model for auto-
inhibition, in which an inhibitory influence propagates
from the site of quantal secretion at constant velocity,
did not improve the predictions. There was therefore
no evidence for an autoinhibitory mechanism, even
though high quantal secretions were reached from a
localized region of the terminal when using recording
electrodes with high concentrations of calcium in a
calcium-free bathing solution. It has been pointed out
that claims regarding a lack of intra-trial auto-
inhibition, based on comparisons between A, and A,
(Baldo et al. 1986), may not be accurate because of the
relative insensitivity of this comparison (Bennett &
Robinson 1990). However the present work shows that
even later occurring quanta show independence, so
that there is no evidence for autoinhibition. Therefore
another mechanism must be sought to account for the
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binomial-like behaviour of quantal secretion from the
entire motor-nerve terminal.

APPENDIX A. ELECTRICAL POTENTIAL
THEORY

(a) Derivation of the cable equation for the surface
of a cylinder

The membrane potential V,, = V, (x;, x5, ) as a result
of a current I, delivered extracellularly can be
described by the partial differential equation,

Tm (anm anm>_ . WV TmTe

2 2 m“m A>
Te+7\ Oxf  Ox; ot 1.t

(10)

where 7, 7, 7,, and ¢, are the electrical constants as
defined in §4a. This is seen as an extension of equation
(2.0) of Hodgkin & Ruchton (1946), which considered
the x; (longitudinal) dimension only.

The solution to this partial differential equation will

be derived. The ‘wrapping’ constraint is

Vi (o, =mt, 8) = Vo (ay, 0, 1), £> 0.

Assume that I, is a unit charge (1 C) delivered
instantaneously at the origin x = (0, 0) at time ¢ = 0. So
the initial condition is

lim V(xy, 2, £) = 8(x,) &
Lnoq (%1, %9, 1) (%1) (xz)re-i-?'i

where §(+) is the Dirac delta function.
Write ¥, as a Fourier series in x,,

o k
Vm(xl’ X2 t) = %F(;(x1> t) + 2 Ec(xp t) cos (%)

k=1
By expanding equation (10) and equating Fourier
coefficients,

rm O°F, ( m K OF,
re

L E 1B =ry e, 2k
re+r, 043 +7, 7 ) T

kF=0,1,2,.... (11)

The Fourier transform in x; of F,(x,,?) is

Ao = |

—0o0

(o]

E,(x,,t) € dx,,

where i = 4/ —1. So by taking Fourier transforms of x;

/ 2 1272
Tm o Tm Kk 0F,
—— —+1|Z =r_ ¢, —,
(re+riw -i_re+ri rrt ) ko imimeay

F=0,1,2,...

and the solution of this is

- 1 Tm o, Tm K
F (0, 1) = ¢ exp -5 _Ha) +r s ?+1 ¢,
m-“m \'e i e i

k=0,1,2,....
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Figure 7. For description see opposite.
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A Fourier series in x, for the initial condition gives

lim [%E,(xl, 0+ X F(x,,¢t) cos (/_c%):l

t->0 k=1

4

= Imle 8(xq) [%Ao+ 3 4, cos <%)J,
k=1 r

R

where 4, = 1/nr, k=0,1,2,.... Hence,

lim (v, 0) = 7= Lo, k=0,1,2,....

(=0 T+ 1y T

So the Fourier transform in x, for the initial condition
is
1 rare 1

(77 [ — J— =
Fl,0) V2T T 41y T g

0,1,2,...,

and

= I oryre 1
VDY P

Therefore,

b g 1
IRV TR

X ex [— 1 (7"‘ WP —m k2+1 ¢
P T bm \Te+ 73 rotr 1 ’

F=0,1,2,....

F(,1)

Take the inverse Fourier transform,

(re+7) m\ Tm?e |1
F £ = i/ “m m-e -
o) «/( ant  )r,+romr

e 1 T k2+
X —— —
P Ton Cm \To 7, 72

Substitution of these Fourier coefficients into (11) gives

_ (Te+ri) cmxi
S |

Vi (%1, %9, 8) = ‘me exp(— ! )

To+ 1, T Cm

(7e+71) Cm _ (re+ri> cm x%
R B e
11 e Kt/ kx,
4 A — — 1
X [2nr+nr z e"p( ro+n) cm) COS( : )] 12
_ "m7e _ ¢
= ——re n r, exp roon

[ e ()
[ ()

o (re+ 1) 6 (%5 —27017)°
xj}_]oo exp(— 4 )] (13)
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The alternative series expansion for the potential
(13) is based on the method of Stephens (1963). Let

g(x,)
_ (ret7) ) 2 _(ret+ 1) o (2, —2mry)*
_A/( amt ) Z CXP( 4 )

j=—0o0

This may be written as a Fourier series expansion,

t kx
g(xy) = 3Gy (t) + Z G, (t) cos (—rg)

k=1
since g(*) is an even function. The Fourier coeflicients
are obtained as

1 K*t/r®
Gy(t) = —exp| —— 1) f=
¢ mexp( (7e+’1)0m)’ k=012,

Substitution of these Fourier coefficients gives

© 2 2
glxy) = —L+i Z exp(—(—ktﬁc—) cos (/2:—2)

2rr  mr o, Te+1)

as required.

Note that the second form of the solution of the
partial differential equation (13) is suited to calculation
of small times as considered in the present application,
that is, when there has not been sufficient time for the
potential to wrap many times around the cylinder. For
larger times, the first form of the expression (12)
converges more quickly corresponding to a nearly
‘uniform’ situation where the potential is nearly equal
around the circumference of the cylinder.

(b) Derivation of the membrane potential and
related numerical functions, for the cylinder cable
equation model
(1) Membrane potential

The membrane potential as a result of a quantal
charge is derived here. It is obtained as the convolution
of the Green’s function, G(y,t), with the current
function, I(¢),

V(g = fc<y,t—s> 1(s) ds.

The current function takes the « form,

I(t) = Qa*te™,

where @ is the total charge delivered by the quantum,

and « is the rate constant. Expressions for V(y,t) will

be derived based on two equivalent Green’s functions.
By using (12) and letting x; = y and x, = 0 Green’s

function 1 is obtained,

7

Gl(y>t> = Tm(r ':Ti) A/((re:;;) Cm)

t_(retn)eny’
X J— J—
exp( Tm €, 4t

m“m

1 1 » k%t/r®
[2T+_E C"p(‘mm m)]

Figure 7. Distribution of 7; and S, = T,— T; of thirteen data sets for the combined model. Histograms are shown
along with the fitted densities based on the parameter estimates. The length of abscissa is 5 ms on all graphs (with
a bin size of 0.14 ms), and the origin for the ¢, distributions has been set at the estimated value of 7. All the vertical
scales are also on the same scale, such that the areas under the curve represent the probability of obtaining a finite

t, or finite s,.
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Define

2
— Te 2

C="m (7e + 71) Qo

and
17

J(t;m, & v) = f exp (—nu——) o du.
0

Then

c Te 1) 6m\
V) = (Lt e

X {%[t'](t) 770? g) _%) - J(t> 770) g) %)]

+3 [ (&5 & —3) —J (5775 5,%)]},

k=1
where
1 K2/r*
= — k=0,1,...
7710 7/m Cm a+ (Te+ri) cm’ o ’

‘g = %[(Te-i_ri) cmy2]'
Alternatively, by using (13) and letting x; = y and
x, = 0 Green’s function 2 is obtained,

7,

2
_ e (re + Tl) cm)
Caoly, ) = 1m (re+ ri) ( 4t

2
Xexp(— ¢ _(re+2icmy)

"m Cm

& 2
x[1+2 > p(_<_+_>_u)]
k=1 4t

where G,(y,t) = G,(y,t). So
C(re+rl) Cm e—zxt

V(iy,t) = o
x{%[tJ(t;% Loy — 1) = J(6:7,£0,0)]
+ %j: [t (E59, s — 1) =T (E57, &s 0)]},
where
n=1/rpcn—a

£ = 10ro+r) enly?+ (2mk)?], k=0,1,....

(i1) Evaluation of the numerical functions

The numerical functions ¢(y), t*(y) and y*(¢) of §4.1
are calculated in the following sequence. For a quantal
secretion at location y: (1) obtain #(y); (2) evaluate the
potential at this point, V. (y) = V(y,t(y)); (3) solve
for ¢, the equation V_, (y)—V(y,t) = 4,, the value of
t being t*(y).

The functions #(y) and t*(y) can be found nu-
merically by Newton-Raphson methods, after
obtaining analytical expressions for the derivatives.
Although it is theoretically possible to obtain y*(¢) by
using direct numerical methods, it is computationally
more convenient to obtain y*(¢) by numerically solving
t*(y)—t =0 for y, after having stored the values of
t*(y) in an array.
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APPENDIX B. PARAMETER ESTIMATION
(a) Fusion-pore model

There are four parameters used to specify the model,
namely A, v, £ and 7. A maximum likelihood procedure
is used here to estimate the parameters.

Assume that there are L+ M+ N pairs of obser-
vations (fy,,%,;) that have been partially sorted, such
that L is the number of pairs with finite ¢, and finite £,,
M is the number of pairs with finite £ and infinite ¢,
and N is the number of pairs with infinite ¢,.

For the parameters 8 = (A, 7y, k,7) the likelihood of
the sample is

L(#;t,,t,)
L LM
= I1/7(t,8) x 11 le(tli) P(Ty=00|T = t,)
i=1 i=L+1
X [P(T; = o0)]"
LM L
= I fr,(t2) X IS, (o | 11,)
i=1 i=1
LM
x I P(T,=00| T, = t,,) x [P(T; = 00)]", (14)
i=L+1

where the probability and density terms are as defined
in equations (1, 2, 3, 4). Owing to the complexities of
calculation of the derivatives and hessian matrix of the
likelihood, a derivative-free version of Powell’s quasi-
Newton method was used to minimize f(f) =
—log L(0;¢,,t,) (FORTRAN code for this algorithm can
be found in Press et al. (1986, p. 299)).

The likelihood maximization was done in two stages:
(1) estimate A, y, £ and 7 from the likelihood of ¢;; (2)
refine these estimates from the likelihood of (¢;,¢,).

Based on the time until the first release, the likelihood
of the sample for the parameters 8 = (A, y,k,7) is

L+M
L(6;t,) = Hlle(tn) X [P(T; = o)™ (15)
f=
All these parameters have a restricted space, either
bounded by a lower value (zero) or between a range of
values. To avoid working with a constrained maxi-
mization problem, it is more convenient to repara-
meterize the problem so that all parameters (and
parameter estimates) have an unrestricted space (any
real value). Hence, a reparameterization of

b= [log A, logvy,logk, log( T )]
bay—T

was made where ¢4, = min{t;;;¢=1,...,L+ M}, and
L(¢) maximized.

(b) Detection error model

For this model, it is assumed that the ‘window’
width for observations, 4,, is known, and that £ is set
at five. So there are five parameters to estimate in the
random-detection error model, A, y, 7, & and 4,,. The
likelihood of the sample for the parameters
0= (Ay,7,a,4,) is the same as in (14), but using the
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density and probability terms in equations (1, 2, 6 and
7). The parameters are estimated numerically in the
following stages:

(1) estimate A, y and 7 from the likelihood of ¢;;

(2) estimate o and 4, from the likelihood of ¢, given
t,, with the values of A, y and 7 from above;

(3) refine all these estimates from the likelihood of
(1, 2).

In the first step, the likelihood L(8; ; ¢;) maximized is
that in (15), where 8, = (A,7,7). The second step
maximized the likelihood

L
L(0,;t,|¢,) = Hﬁz(tm“u)
i=1

M
X X PHTy= 0| T =t,),

i=L+1
where 8, = (o, 4,). Note that
L(0,;t,) L(By5t,|t,) < L(O;t),t,),

so that a comparison of L(6;;t,)L(0,;t,|¢t,) with
L(0;t,,t,) can be used to assess how effective the third
(refinement) step has been.

(¢) Combined model

In the combined model, six parameters are used,
namely A, y, 7, a, 4,, and v. The likelihood of the
sample for the parameters @ = (A,y,7,a, 4,,0) is again
that given in equation (14), but with use of the
probability and density terms that are as defined in
equations (1, 2, 8, 9). A three stage method will again
be used for parameter estimation, namely:

(1) estimate A, y and 7 from the likelihood of #;;

(2) estimate o, 4, and v from the conditional
distribution of the second releases;

(8) refine estimates of all parameters by using times
of both first and second releases.

A reparameterization is again done to allow an
unconstrained maximization to be made. Note that v
can be no more than the inverse of the maximum
interval between first and second releases, since the
entire strip would always be covered by then. In
addition, v cannot be negative. To achieve these
constraints, v was reparameterized via a logistic type
transformation as

v =log[v/ (SI(IL)_U)L

where 5, = max{s;;;¢=1,...,L}.

It is seen that v is estimated as zero whenever the
likelihood (as a function of v) has a non-positive slope
as v—>0 (vV—>—o00), that is, whenever the sum of the
scores

%logL(v;tﬂtl) Y <0.

So, in the second of the three stages, the total score at
v = 0 is evaluated first (by using initial estimates of a
and 4,,) tosee if § = 0 (as indicated by a negative value
of this derivative). When ¢ = 0 is indicated by this
preliminary procedure, o and 4, can be estimated by
setting v = 0 (and fitting a detection error model only) ;
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otherwise the likelihood needs to be maximized over
0= (a,4,,v). It speeds up the computation con-
siderably if 7 is assumed zero.

APPENDIX C. PARAMETRIC BOOTSTRAP
OF PARAMETER ESTIMATES

Once parameter estimates for a data set are
obtained, pseudo-data may be simulated from the
distribution with the estimates taken as the true
parameters. The simulation method used here is based
on that of Bennett & Robinson (1990). The bootstrap
procedure is summarized as follows:

(1) obtain maximum likelihood estimates from the
actual time course data, ;

(2) generate L+ M+ N random pairs of release times
from the A (¢;0) distribution;

(3) obtain new maximum likelihood estimates, éj‘,

(4) repeat steps 2 and 3 forj =1,..., Ng;

(5) obtain empirical means, standard errors, bias
etc. of the parameter estimates.

This method was applied to the combined model,
generating pseudo-data with use of the parameter
estimates obtained in this analysis (sets of
L+ M+ N =800 quantal secretion times). The es-
timation procedure was then applied to each simulated
data set, and the results shown in table 2. Ideally, the
number of bootstrap samples (N,,) would be at least
1000. However, because of the intensive computing
required for these procedures, the procedure was only
repeated 200 times to obtain the bootstrap distribution
of (A,7,4,), and ten times to obtain the bootstrap
distribution of (A, y,7,4,,7).
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